Factors Impacting the Flavor of Dried Dairy Ingredients

MaryAnne Drake
North Carolina State University
Southeast Dairy Foods Research Center

Dairy Ingredients: The bottom line

- Competitive, global and expanding market
- What are the keys to success?
 - Make what people want to buy
- Deliver targets to customers
What are the targets?

• In the case of dairy ingredients, functionality and nutrition are targets and so is flavor.

No flavor –

no flavor carry through is the desired target along with no color for whey ingredients

Mild milky flavor –

is the desired target along for milk ingredients
Why IS flavor of protein ingredients important?

- Off-flavors are present in proteins (Carunchia Whetstine et al., 2005; Russell et al., 2006; Drake, 2006; Wright et al., 2006; 2008)
 - All ingredients DO NOT taste the same

- Dried protein ingredient flavor can carry through into finished products (Russell et al., 2006, Drake, 2006; Drake et al., 2008; Childs et al., 2007; Wright et al., 2008)

- >50% consumers today are looking to place more protein into their diet

Delivering Target Flavor

- Know your ingredient(s) – and the competition
 - Understand ingredient flavor and flavor stability
 - Understand the impact of processing parameters!
- Know your applications
- Know your customer(s)
Sensory profiles of WPC80 (Trained panel)

Consumer Acceptability
Liking of peach protein beverages

N=100 consumers

Whey proteins with least Flavor make preferred beverages

Aroma
Overall
Ideal Attributes for Different Protein Applications

<table>
<thead>
<tr>
<th>N=1012 consumers</th>
<th>Powders</th>
<th>Beverages</th>
<th>Bars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavor</td>
<td>Chocolate</td>
<td>Chocolate</td>
<td>Chocolate</td>
</tr>
<tr>
<td>Protein Type</td>
<td>Whey</td>
<td>Whey</td>
<td>Whey or Milk</td>
</tr>
<tr>
<td>Protein Amount</td>
<td>20-29g/serving</td>
<td>20-29g/serving</td>
<td>20-29g/serving</td>
</tr>
<tr>
<td>Label Claims</td>
<td>All-natural</td>
<td>All-natural</td>
<td>All-natural</td>
</tr>
<tr>
<td>Carbohydrate Content</td>
<td>Low Carb</td>
<td>Low Carb</td>
<td>Low Carb</td>
</tr>
<tr>
<td>Sweetener Claims</td>
<td>Naturally Sweetened</td>
<td>Naturally Sweetened</td>
<td>Naturally Sweetened</td>
</tr>
<tr>
<td>Sweetener Type</td>
<td>Stevia</td>
<td>Stevia</td>
<td>Stevia</td>
</tr>
</tbody>
</table>

Consistent across platforms!

Liking of Protein Beverages

<table>
<thead>
<tr>
<th>N=150 consumers</th>
</tr>
</thead>
<tbody>
<tr>
<td>10g/serving</td>
</tr>
<tr>
<td>10 g vs 20 g/serving</td>
</tr>
</tbody>
</table>

Flavor of the protein source and amount of protein impact consumer acceptance
Protein sensory effects

- More whey protein: more desirable to consumers *conceptually*
- More whey protein: higher cardboard flavor
- More whey protein: higher viscosity
- More whey protein: higher astringency

- **More protein: more protein-related challenges**

Sensory analysis is a requirement

- **Instruments do not document flavor (or texture)** -- they document chemical or physical properties that we can link to flavor (or texture)
- Sensory analysis with instrumental analysis allows us:
 - Enhanced product understanding
 - Enhanced consumer/customer understanding
 - Sources of flavors
Flavor sources in dairy ingredients

Feed influences flavor of all dairy products

- Aromatic compounds from feeds influence flavor of milk
 - Total mixed ration (TMR) – sweet and malty flavors
 - Pasture-fed, organic – grassy flavors
- Type and intensity of these flavors will vary and depend on feed type, time consumed before milking and season

Key take away: what you feed the cows impacts milk flavor --- and whey flavor
Influence of cheesemake

- Dried whey ingredient flavor starts with the cheese milk
- Different cheesemakes produce different flavored cheese – and different flavored wheys

- Fluid whey already has lipid oxidation compounds
 - Annatto plays no direct role
 - Starter culture increases oxidation
 - mesophilic > thermophilic
 - Differences among mesophilic starters

Key takeaways:

- The cheesemake influences whey flavor
 - Milk whey protein (serum protein) will be distinct in flavor from cheese whey protein
 - Different cheeses are distinct in flavor – so are different wheys
- Lipid oxidation has already initiated in fresh fluid whey
Influence of Processing

- Influence of processing - several sources:
 - Fat separation
 - Membrane sanitation
 - Storage of fluid product
 - Bleaching
 - Homogenization pressure (WMP)
 - Evaporation vs RO (milk and whey powders)
 - Solids and pH at spray dry
 - Spray drying parameters (drier inlet and outlet temp, run time)
 - Storage of dried product and instantization
- Many of these also impact flavor of all dried dairy ingredients!

Influence of Spray Drying

- Spray drying parameters influence flavor of dried dairy ingredients
- Spray drying process increases flavor intensity
 - No impact on solubility across pH or heat stability (p<0.05)
- Higher solids produces lower flavor intensities, decreased aldehydes and greater shelf stability (whey and milk proteins, due to particle size and surface free fat)
Solids and Inlet Temperature

- Higher solids at spray dry:
 - Increased particle size
 - Decreased surface free fat
 - Decreased oxidation and improved flavor
- Similar effect with inlet temperature: higher is better

Key takeaway:
spray dry at highest possible solids

Drier Run Time

- Product flavor is not the same across the drier run
 - **Initial:** can have carryover effects from previous product
 - **End:** increased oxidation with increased cardboard flavor and burnt flavor due to burn-on
- Big challenge for QC
 - How are retains or representative samples collected?

Key takeaway:
If you are switching products, check and re-check by sensory that you have enough discard bags at beginning of run.
Storage of Powder

- **Instantization**
 - Increases functionality, decreases shelf life

- **Package**
 - 2 and 3-ply bags and totes are common and work
 - Foil or foil liner will prolong shelf life but may not be cost effective

- **Time and temperature**
 - Optimum shelf life of dried dairy proteins is 18-24 mo (tops!)
 - >25°C storage changes the chemistry: Maillard and lipid oxidation
 - Different off flavors, color changes and solubility

Shelf life and Instantization

- Whey protein collected from 4 suppliers in duplicate
 - 3 sources of WPC80
 - 2 sources of WPI
 - Re-wet and single pass
 - With and without added lecithin

- Physical, sensory and instrumental volatiles evaluated across 18 mo storage

Key takeaway: Storage time is not infinite - lipid oxidation still occurs
Sampling of dried ingredients

• Ideally – dried ingredient from a single 18-22 h run is the same from beginning to end

• Reality – beginning of run can have carryover from previous, end of run can have flavors due to run time

• Most conservative: 1 or more composite samples and or composite from end of run

Summary: Source of flavors

• Every step from milk receipt to spray dried product to storage and final application influences flavor of dried dairy ingredients

• Optimization of processing parameters can be applied to maximize flavor quality

Invited review: The effects of processing parameters on the flavor of whey protein ingredients

B. G. Carter and M. A. Drake
Department of Food, Bioprocessing and Nutrition Sciences, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh 27695
Sensory analysis is a requirement

- Instruments do not document flavor (or texture) -- they document chemical or physical properties that we can link to flavor (or texture)
- Sensory analysis with instrumental analysis allows us:
 - Enhanced product understanding
 - Enhanced consumer/customer understanding
 - Sources of flavors

Where is Sensory Used?

Research & Development Quality Assurance Marketing
Human Senses

- 7 modalities – vision, olfaction, gustation, chemesthesis, audition, kinesthesis, somesthesis
- All play a role in sensory perception
- Physiology of each modality determines specific sensory testing requirements

Flavor

Sensations perceived via the chemical senses from a product in the mouth.

Aromatics + Basic Tastes + Trigeminal = Flavor
Aroma/Flavor Physiology

Trigeminal nerves (5th cranial nerves)

Gustation (Basic Tastes)

- Along with olfaction, the most widely studied chemical sense
- Perceived by taste buds
- Taste buds are balls of modified epithelial cells with a pore or channel.
 - Solutions make contact with cells through the pore
 - Lifespan of 1 week
- Taste buds are located within the papilla on tongue and soft palate
- Different tastes are not perceived on different areas of the tongue
The Sense of Taste

- Taste: the ability to respond to dissolved molecules and ions
- Physiology
 - Humans detect taste with taste receptor cells. These are clustered in taste buds
 - A single taste bud contains 50-100 taste cells representing all 5 taste sensations

Olfaction: where the flavor is!

- Stimulation of the olfactory epithelium by a volatile compound
- Comprises the majority of what we consider flavor
- Receptors are true nerve cells rather than modified epithelial cells
- More rapid response than basic tastes - 1-2 seconds
- More rapid adaptation – reduced sensitivity under constant stimulation
Chemesthesis

- Stimulation of the trigeminal (cranial) nerves in the mucous membranes of the nose, eyes, mouth, and throat
- Plays a critical role in acceptability of certain foods and pharmaceutical products
- Not a part of flavor for most, if not all, dried dairy ingredients!

Flavor of dried ingredients: How do we measure?

- Sensory analysis – aroma and flavor of REHYDRATED dried whey protein can tell you a lot of information
Flavor of dried ingredients: How do we measure?

- Sensory analysis – aroma and flavor of REHYDRATED dried whey protein can tell you a lot of information
- Rehydrate product at 10% (w/v) solids (*SNF for WMP)
- Evaluate in LIDDED cup at 15-21C
- Evaluate at > 10C – **COLD and NO LID IS NOT GOOD FOR FLAVOR QC**

Flavor of whey protein

- Fresh ideal whey protein will have a mild, sweet aroma with a bland flavor
 - A mild cardboard flavor is ubiquitous
 - Non MF isolates may have low bitter and salty tastes and soapy flavor
 - Instantized products may have faint cucumber flavors
 - International proteins will have a grassy/hay aroma and flavor
- **Target flavor and flavor variance will vary with supplier**
- **Target flavor and flavor variance may vary with ingredient application**

There is tremendous inherent flavor variability among suppliers!
Flavor of milk protein and milk powders

- Fresh ideal milk protein will have a mild, sweet aroma with a bland flavor
 - A faint corn chip flavor is ubiquitous in MPI
 - International proteins will have a grassy/hay aroma and flavor
- Fresh ideal NFDM and WMP will taste like their fluid milk counterparts
 - Higher heat products will have sulfur/burnt notes
 - Mild caramelized flavor is ubiquitous in WMP
 - International proteins will have a grassy/hay aroma and flavor
- Target flavor and flavor variance will vary with supplier
- Target flavor and flavor variance may vary with ingredient application

Sensory Rules

- Be on Time
- No Smoking, Eating, Drinking • 15-30 minutes before panel
- Avoid Distractions
- Don’t wear cologne, perfume, etc.
- Wash your hands before tasting
- Pay attention & participate
Acknowledgements

• National Dairy Council